Quick Menu

Fluorescent Products

Fluorescent products have many useful functions in biological studies. The following is a summary of the potential uses.

  1. Permeability studies: fluorescent derivatives can be used for studying biological permeability in cells, tissues, humans (non-clinical), and animals. The permeability of fluorescent derivatives depends on the different product sizes, charges, and fluorescent types.
  2. Sugar metabolic studies: FITC-Trehalose is a good tracer for labeling mycomembranes to study sugar metabolism by bacteria.
  3. pH visualizations: fluorescent dyes can be used as pH-indicators in living cells. They can reflect the changing physiological pH of cells in response to various cellular processes.
  4. Hydrogels: dextran derivatives are useful for hydrogel formation due to their low toxicity and ability to incorporate well with hydrogel structural materials.
  5. Matrix preparation: CM-derivatives can be used as a matrix component for electrochemical immunoassays, regulation of scaffold cell adhesion, enzyme immobilization, construction of polymer membranes, and hydrophilization of substances.

For more information about fluorescent products and their uses, please scroll down below or click here.

Chondrex, Inc. offers the following fluorescent products. Please scroll down to the corresponding tables to see more specific products. 

  • Antonia Red™-dextran
  • Antonia Red™-lysine-dextran
  • ATTO488™-dextrans
  • ATTO488™-lysine-dextran
  • ATTO647n™-lysine-dextran
  • FITC-CM-dextran
  • FITC-CM-polysucrose
  • FITC-DEAE-dextran
  • FITC-DEAE-polysucrose
  • FITC-dextran
  • FITC-dextran sulfate 
  • FITC-hydroxyethyl starch
  • FITC-inulin
  • FITC-lysine-dextran
  • FITC-polysucrose
  • FITC-Q-dextran
  • FITC-Trehalose
  • Fluorescent hyaluronic acid
  • TRITC-dextran 
  • TRITC hyaluronic acid
  • TRITC-lysine-dextran
  • TRITC-polysucrose

Antonia Red™-dextran

Product Quantity Catalog # Price (USD)
Antonia Red™-dextran 4kDa, 10mg 10 mg CARD4-10mg 260.00
Antonia Red™-dextran 4kDa, 50mg 50 mg CARD4-50mg 680.00
Antonia Red™-dextran 20kDa, 10mg 10 mg CARD20-10mg 260.00
Antonia Red™-dextran 20kDa, 50mg 50 mg CARD20-50mg 680.00
Antonia Red™-dextran 40kDa, 10mg 10 mg CARD40-10mg 260.00
Antonia Red™-dextran 40kDa, 50mg 50 mg CARD40-50mg 680.00
Antonia Red™-dextran 150kDa, 10mg 10 mg CARD150-10mg 260.00
Antonia Red™-dextran 150kDa, 50mg 50 mg CARD150-50mg 680.00

Antonia Red™-lysine-dextran

Product Quantity Catalog # Price (USD)
Antonia Red™-lysine-dextran 4kDa, 50mg 50 mg CARLD4-50mg 860.00
Antonia Red™-lysine-dextran 20kDa, 10mg 10 mg CARLD20-10mg 340.00
Antonia Red™-lysine-dextran 20kDa, 50mg 50 mg CARLD20-50mg 860.00
Antonia Red™-lysine-dextran 40kDa, 10mg 10 mg CARLD40-10mg 340.00
Antonia Red™-lysine-dextran 40 kDa, 50mg 50 mg CARLD40-50mg 860.00
Antonia Red™-lysine-dextran 70kDa, 10mg 10 mg CARLD70-10mg 340.00
Antonia Red™-lysine-dextran 70kDa, 50mg 50 mg CARLD70-50mg 860.00
Antonia Red™-lysine-dextran 150kDa, 10mg 10 mg CARLD150-10mg 340.00
Antonia Red™-lysine-dextran 150kDa, 15mg 15 mg CARLD150-15mg 860.00

ATTO488™-dextran

Product Quantity Catalog # Price (USD)
ATTO488-dextran 4kDa, 5mg 5 mg CAT488D4-5mg 500.00

ATTO488™-lysine-dextran

Product Quantity Catalog # Price (USD)
ATTO488-lysine-dextran 10kDa, 5mg 5 mg CAT488LD10-5mg 660.00

ATTO647N™-lysine-dextran

Product Quantity Catalog # Price (USD)
ATTO647N-lysine-dextran 70kDa, 5mg 5 mg CAT647nLD70-5mg 690.00

FITC-CM-dextran

Product Quantity Catalog # Price (USD)
FITC-CM-dextran 4kDa, 100mg 100 mg CFCMD4-100mg 190.00
FITC-CM-dextran 4kDa, 1g 1 g CFCMD4-1g 540.00
FITC-CM-dextran 20kDa, 100mg 100 mg CFCMD20-100mg 190.00
FITC-CM-dextran 20kDa, 1g 1 g CFCMD20-1g 540.00
FITC-CM-dextran 40kDa, 100mg 100 mg CFCMD40-100mg 190.00
FITC-CM-dextran 40kDa, 1g 1 g CFCMD40-1g 540.00
FITC-CM-dextran 70kDa, 100mg 100 mg CFCMD70-100mg 190.00
FITC-CM-dextran 70kDa, 1g 1 g CFCMD70-1g 540.00
FITC-CM-dextran 150kDa, 100mg 100 mg CFCMD150-100mg 190.00
FITC-CM-dextran 150kDa, 1g 1 g CFCMD150-1g 540.00

FITC-CM-Polysucrose

Product Quantity Catalog # Price (USD)
FITC-CM-Polysucrose 70kDa, 100mg 100 mg CFCMP70-100mg 270.00
FITC-CM-Polysucrose 70kDa, 1g 1 g CFCMP70-1g 1030.00
FITC-CM-Polysucrose 400kDa, 100mg 100 mg CFCMP400-100mg 270.00
FITC-CM-Polysucrose 400kDa, 1g 1 g CFCMP400-1g 1030.00

FITC-DEAE-dextran

Product Quantity Catalog # Price (USD)
FITC-DEAE-dextran 4kDa, 100mg 100 mg CFDD4-100mg 200.00
FITC-DEAE-dextran 4kDa, 1g 1 g CFDD4-1g 560.00
FITC-DEAE-dextran 10kDa, 100mg 100 mg CFDD10-100mg 200.00
FITC-DEAE-dextran 10kDa, 1g 1 g CFDD10-1g 560.00
FITC-DEAE-dextran 20kDa, 100mg 100 mg CFDD20-100mg 200.00
FITC-DEAE-dextran 20kDa, 1g 1 g CFDD20-1g 560.00
FITC-DEAE-dextran 40kDa, 100mg 100 mg CFDD40-100mg 200.00
FITC-DEAE-dextran 40kDa, 1g 1 g CFDD40-1g 560.00
FITC-DEAE-dextran 70kDa, 100mg 100 mg CFDD70-100mg 200.00
FITC-DEAE-dextran 70kDa, 1g 1 g CFDD70-1g 560.00
FITC-DEAE-dextran 150kDa, 100mg 100 mg CFDD150-100mg 200.00
FITC-DEAE-dextran 150kDa, 1g 1 g CFDD150-1g 560.00

FITC-DEAE-Polysucrose

Product Quantity Catalog # Price (USD)
FITC-DEAE-Polysucrose 70kDa, 100mg 100 mg CFDP70-100mg 200.00
FITC-DEAE-Polysucrose 70kDa, 1g 1 g CFDP70-1g 880.00
FITC-DEAE-Polysucrose 400kDa, 100mg 100 mg CFDP400-100mg 200.00
FITC-DEAE-Polysucrose 400kDa, 1g 1 g CFDP400-1g 880.00

FITC-dextran

Product Quantity Catalog # Price (USD)
FITC-dextran 4kDa, 100mg 100 mg CFD4-100mg 240.00
FITC-dextran 4kDa, 1g 1 g CFD4-1g 520.00
FITC-dextran 4kDa, 5g 5 g CFD4-5g 1260.00
FITC-dextran 10kDa, 100mg 100 mg CFD10-100mg 240.00
FITC-dextran 10kDa, 1g 1 g CFD10-1g 520.00
FITC-dextran 10kDa, 5g 5 g CFD10-5g 1260.00
FITC-dextran 20kDa, 100mg 100 mg CFD20-100mg 240.00
FITC-dextran 20kDa, 1g 1 g CFD20-1g 520.00
FITC-dextran 20kDa, 5g 5 g CFD20-5g 1260.00
FITC-dextran 40kDa, 100mg 100 mg CFD40-100mg 240.00
FITC-dextran 40kDa, 1g 1 g CFD40-1g 520.00
FITC-dextran 40kDa, 5g 5 g CFD40-5g 1260.00
FITC-dextran 70kDa, 100mg 100 mg CFD70-100mg 240.00
FITC-dextran 70kDa, 1g 1 g CFD70-1g 520.00
FITC-dextran 70kDa, 5g 5 g CFD70-5g 1260.00
FITC-dextran 110kDa, 100mg 100 mg CFD110-100mg 240.00
FITC-dextran 110kDa, 1g 1 g CFD110-1g 750.00
FITC-dextran 110kDa, 5g 5 g CFD110-5g 1360.00
FITC-dextran 150kDa, 100mg 100 mg CFD150-100mg 240.00
FITC-dextran 150kDa, 1g 1 g CFD150-1g 520.00
FITC-dextran 150kDa, 5g 5 g CFD150-5g 1260.00
FITC-dextran 500kDa, 100mg 100 mg CFD500-100mg 240.00
FITC-dextran 500kDa, 1g 1 g CFD500-1g 520.00
FITC-dextran 500kDa, 5g 5 g CFD500-5g 1260.00
FITC-dextran 2000kDa, 100mg 100 mg CFD2000-100mg 240.00
FITC-dextran 2000kDa, 1g 1 g CFD2000-1g 520.00
FITC-dextran 2000kDa, 5g 5 g CFD2000-5g 1260.00

FITC-dextran sulfate

Product Quantity Catalog # Price (USD)
FITC-dextran sulfate 4kDa, 100mg 100 mg CFDSS4-100mg 210.00
FITC-dextran sulfate 4kDa, 1g 1 g CFDSS4-1g 900.00
FITC-dextran sulfate 10kDa, 100mg 100 mg CFDSS10-100mg 210.00
FITC-dextran sulfate 10kDa, 1g 1 g CFDSS10-1g 900.00
FITC-dextran sulfate 40kDa, 100mg 100 mg CFDSS40-100mg 210.00
FITC-dextran sulfate 40kDa, 1g 1 g CFDSS40-1g 900.00
FITC-dextran sulfate 500kDa, 100mg 100 mg CFDSS500-100mg 210.00
FITC-dextran sulfate 500kDa, 1g 1 g CFDSS500-1g 900.00

FITC-Hydroxyethyl Starch

Product Quantity Catalog # Price (USD)
FITC-Hydroxyethyl Starch, 1g 1 g CFHES-1g 1010.00

FITC-inulin

Product Quantity Catalog # Price (USD)
FITC-inulin, 100mg 100 mg CFI-100mg 190.00
FITC-inulin, 1g 1 g CFI-1g 510.00
FITC-inulin, 5g 5 g CFI-5g 1200.00

FITC-lysine-dextran

Product Quantity Catalog # Price (USD)
FITC-lysine-dextran 4kDa, 5mg 5 mg CFLD4-5mg 490.00
FITC-lysine-dextran 4kDa, 10mg 10 mg CFLD4-10mg 240.00
FITC-lysine-dextran 10kDa, 10mg 10 mg CFLD10-10mg 240.00
FITC-lysine-dextran 10kDa, 50mg 50 mg CFLD10-50mg 490.00
FITC-lysine-dextran 70kDa, 10mg 10 mg CFLD70-10mg 240.00
FITC-lysine-dextran 70kDa, 50mg 50 mg CFLD70-50mg 490.00
FITC-lysine-dextran 500kDa, 10mg 10 mg CFLD500-10mg 240.00
FITC-lysine-dextran 500kDa, 50mg 50 mg CFLD500-50mg 490.00

FITC-Polysucrose

Product Quantity Catalog # Price (USD)
FITC-Polysucrose 20kDa, 100mg 100 mg CFP20-100mg 190.00
FITC-Polysucrose 20kDa, 1g 1 g CFP20-1g 680.00
FITC-Polysucrose 40kDa, 100mg 100 mg CFP40-100mg 190.00
FITC-Polysucrose 40kDa, 1g 1 g CFP40-1g 680.00
FITC-Polysucrose 50kDa, 100mg 100 mg CFP50-100mg 190.00
FITC-Polysucrose 50kDa, 1g 1 g CFP50-1g 680.00
FITC-Polysucrose 70kDa, 100mg 100 mg CFP70-100mg 150.00
FITC-Polysucrose 70kDa, 1g 1 g CFP70-1g 540.00
FITC-Polysucrose 100kDa, 100mg 100 mg CFP100-100mg 190.00
FITC-Polysucrose 100kDa, 1g 1 g CFP100-1g 680.00
FITC-Polysucrose 170kDa, 100mg 100 mg CFP170-100mg 190.00
FITC-Polysucrose 170kDa, 1g 1 g CFP170-1g 680.00
FITC-Polysucrose 400kDa, 100mg 100 mg CFP400-100mg 150.00
FITC-Polysucrose 400kDa, 1g 1 g CFP400-1g 540.00

FITC-Q-dextran

Product Quantity Catalog # Price (USD)
FITC-Q-dextran 10kDa, 100mg 100 mg CFQD10-100mg 220.00
FITC-Q-dextran 10kDa, 1g 1 g CFDQ10-1g 660.00

FITC-Trehalose

Product In Vitro Application In Vivo Application Quantity Catalog # Price (USD)
FITC-Trehalose, 1mg 1 mg CFTRE-1mg 990.00

Fluorescent hyaluronic acid

Product Quantity Catalog # Price (USD)
Fluorescent hyaluronic acid, 100mg 100 mg CFHA-Se-100mg 330.00

TRITC-dextran

Product Quantity Catalog # Price (USD)
TRITC-dextran 4kDa, 100mg 100 mg CTD4-100mg 200.00
TRITC-dextran 4kDa, 1g 1 g CTD4-1g 630.00
TRITC-dextran 20kDa, 100mg 100 mg CTD20-100mg 200.00
TRITC-dextran 20kDa, 1g 1 g CTD20-1g 630.00
TRITC-dextran 40kDa, 100mg 100 mg CTD40-100mg 200.00
TRITC-dextran 40kDa, 1g 1 g CTD40-1g 630.00
TRITC-dextran 70kDa, 100mg 100 mg CTD70-100mg 200.00
TRITC-dextran 70kDa, 1g 1 g CTD70-1g 630.00
TRITC-dextran 150kDa, 100mg 100 mg CTD150-100mg 200.00
TRITC-dextran 150kDa, 1g 1 g CTD150-1g 630.00
TRITC-dextran 500kDa, 100mg 100 mg CTD500-100mg 200.00
TRITC-dextran 500kDa, 1g 1 g CTD500-1g 630.00
TRITC-dextran 2000kDa, 100mg 100 mg CTD2000-100mg 200.00
TRITC-dextran 2000kDa, 1g 1 g CTD2000-1g 630.00

TRITC-hyaluronic acid

Product Quantity Catalog # Price (USD)
TRITC-hyaluronic acid, 100mg 100 mg CTHA-Se-100mg 310.00

TRITC-lysine-dextran

Product Quantity Catalog # Price (USD)
TRITC-lysine-dextran 4kDa, 10mg 10 mg CTLD4-10mg 330.00
TRITC-lysine-dextran 4kDa, 50mg 50 mg CTLD4-50mg 570.00
TRITC-lysine-dextran 10kDa, 10mg 10 mg CTLD10-10mg 330.00
TRITC-lysine-dextran 10kDa, 50mg 50 mg CTLD10-50mg 570.00
TRITC-lysine-dextran 70kDa, 10mg 10 mg CTLD70-10mg 330.00
TRITC-lysine-dextran 70kDa, 50mg 50 mg CTLD70-50mg 570.00
TRITC-lysine-dextran 500kDa, 10mg 10 mg CTLD500-10mg 330.00
TRITC-lysine-dextran 500kDa, 50mg 50 mg CTLD500-50mg 570.00

TRITC-Polysucrose

Product Quantity Catalog # Price (USD)
TRITC-Polysucrose 20kDa, 100mg 100 mg CTP20-100mg 190.00
TRITC-Polysucrose 20kDa, 1g 1 g CTP20-1g 680.00
TRITC-Polysucrose 40kDa, 100mg 100 mg CTP40-100mg 190.00
TRITC-Polysucrose 40kDa, 1g 1 g CTP40-1g 680.00
TRITC-Polysucrose 70kDa, 100mg 100 mg CTP70-100mg 190.00
TRITC-Polysucrose 70kDa, 1g 1 g CTP70-1g 680.00
TRITC-Polysucrose 400kDa, 100mg 100 mg CTP400-100mg 190.00
TRITC-Polysucrose 400kDa, 1g 1 g CTP400-1g 680.00

1. Permeability Studies

Biological permeability is the passage of substances through a biological membrane or a barrier which can either be selectively or indiscriminately permeable. The permeability is affected by substance properties such as a polarity, hydrophobicity, charge, size, and shape (1). The properties of the membrane or barrier itself are also important. Fluorescent dextran derivatives or other polysaccharides of various sizes can be used for permeability and transport studies in cells, tissues, and animals. Fluorescent measurements can also provide qualitative data in real time with use of intravital fluorescence microscopy. More specifically, they are ideal for many types of studies such as vascular permeability (2,3), glomerular filtration (4–6), and evaluating the blood-brain barrier (7), internal tissue (14,15), neural stem cells (16), renal tissue (17), keratin permeability (8), and the epithelial (9–11) and mucosal (12,13) layers.  In addition, fluorescent dextran derivatives have been used to study microcirculation, the smallest level of blood circulation in the micro vessels present in all organ tissues (21), for applications such as leukocyte adhesion, macromolecular leakage (22), and intestinal mucosal microcirculation (23). Polysaccharides conjugated with carboxymethyl (CM)-or diethylaminomethyl (DEAE)-groups are useful for studying the effects of charge on permeability (18–20).

References  

  1.  J. Reece, N. Campbell. Campbell Biology (Benjamin Cummings/Pearson., 2008).
  2. C. Bulant, P. Blanco, L. Müller, J. Scharfstein, E. Svensjö, Computer-aided quantification of microvascular networks: Application to alterations due to pathological angiogenesis in the hamster. Microvasc Res 112, 53-64 (2017).
  3. C. Nascimento, D. Andrade, C. Carvalho-Pinto, R. Serra, L. Vellasco, et al., Mast Cell Coupling to the Kallikrein-Kinin System Fuels Intracardiac Parasitism and Worsens Heart Pathology in Experimental Chagas Disease. Front Immunol 8, 840 (2017).
  4. D. Asgeirsson, D. Venturoli, E. Fries, B. Rippe, C. Rippe, Glomerular sieving of three neutral polysaccharides, polyethylene oxide and bikunin in rat. Effects of molecular size and conformation. Acta Physiol (Oxf) 191, 237-46 (2007).
  5. J. Dolinina, K. Sverrisson, A. Rippe, C. Öberg, B. Rippe, Nitric oxide synthase inhibition causes acute increases in glomerular permeability in vivo, dependent upon reactive oxygen species. Am J Physiol Renal Physiol 311, F984-F990 (2016).
  6. C. Rippe, D. Asgeirsson, D. Venturoli, A. Rippe, B. Rippe, Effects of glomerular filtration rate on Ficoll sieving coefficients (theta) in rats. Kidney Int 69, 1326-32 (2006).
  7. S. Gustafsson, T. Gustavsson, S. Roshanbin, G. Hultqvist, M. Hammarlund-Udenaes, et al., Blood-brain barrier integrity in a mouse model of Alzheimer's disease with or without acute 3D6 immunotherapy. Neuropharmacology 143, 1-9 (2018).
  8. J. Navarro, J. Swayambunathan, M. Lerman, M. Santoro, J. Fisher, Development of keratin-based membranes for potential use in skin repair. Acta Biomater 83, 177-188 (2019).
  9. R. Bücker, S. Krug, V. Moos, C. Bojarski, M. Schweiger, et al., Campylobacter jejuni impairs sodium transport and epithelial barrier function via cytokine release in human colon. Mucosal Immunol 11, 474-485 (2018).
  10. D. Propheter, A. Chara, T. Harris, K. Ruhn, L. Hooper, Resistin-like molecule β is a bactericidal protein that promotes spatial segregation of the microbiota and the colonic epithelium. Proc Natl Acad Sci U S A 114, 11027-11033 (2017).
  11. R. Bowie, S. Donatello, C. Lyes, M. Owens, I. Babina, et al., Lipid rafts are disrupted in mildly inflamed intestinal microenvironments without overt disruption of the epithelial barrier. Am J Physiol Gastrointest Liver Physiol 302, G781-93 (2012).
  12. S. Lee, H. Kim, K. Kim, H. Lee, S. Lee, D. Lee, et al., Arhgap17, a RhoGTPase activating protein, regulates mucosal and epithelial barrier function in the mouse colon. Sci Rep 6, 26923 (2016).
  13. T. Dolowschiak, A. Mueller, L. Pisan, R. Feigelman, B. Felmy, et al., IFN-γ Hinders Recovery from Mucosal Inflammation during Antibiotic Therapy for Salmonella Gut Infection. Cell Host Microbe 20, 238-49 (2016).
  14. A. Torge, G. Pavone, M. Jurisic, K. Lima-Engelmann, & M. Schneider, A comparison of spherical and cylindrical microparticles composed of nanoparticles for pulmonary application. Aerosol Sci. Technol. 53, 53–62 (2019).
  15. H. Epple, et al., Architectural and functional alterations of the small intestinal mucosa in classical Whipple’s disease. Mucosal Immunol. 10, 1542–1552 (2017).
  16. C. Zhu, S. Mahesula, S. Temple, E. Kokovay, Heterogeneous Expression of SDF1 Retains Actively Proliferating Neural Progenitors in the Capillary Compartment of the Niche. Stem Cell Reports 12, 6-13 (2019).
  17. O. Palygin, V. Levchenko, D. Ilatovskaya, T. Pavlov, O. Pochynyuk, et al., Essential role of Kir5.1 channels in renal salt handling and blood pressure control. JCI Insight 2, e92331 (2017).
  18. N. Srikantha, F. Mourad, K. Suhling, N. Elsaid, J. Levitt, et al., Influence of molecular shape, conformability, net surface charge, and tissue interaction on transscleral macromolecular diffusion. Exp Eye Res 102, 85-92 (2012).
  19. D. Asgeirsson, D. Venturoli, B. Rippe, C. Rippe, Increased glomerular permeability to negatively charged Ficoll relative to neutral Ficoll in rats. Am J Physiol Renal Physiol 291, F1083-9 (2006).
  20. S. Stewart, S. Kondos, A. Matthews, M. D'Angelo, M. Dunstone, et al., The perforin pore facilitates the delivery of cationic cargos. J Biol Chem 289, 9172-81 (2014).
  21. W. Jackson, “Chapter 89 – Microcirculation” in Muscle, J. Hill & E. Olson, Eds.(Academic Press, 2012), pp. 1197–1206
  22. C. Simões, E. Svensjö, E. Bouskela, Effects of cromakalim and glibenclamide on arteriolar and venular diameters and macromolecular leakage in the microcirculation during ischemia/reperfusion. J Cardiovasc Pharmacol 39, 340-6 (2002).
  23. C. Schmidt, C. Lautenschläger, B. Petzold, Y. Sakr, G. Marx, A. Stallmach, et al., Confocal laser endomicroscopy reliably detects sepsis-related and treatment-associated changes in intestinal mucosal microcirculation. Br J Anaesth 111, 996-1003 (2013).


2. Sugar Metabolic Studies
In nature, trehalose can be found in animals, plants, and microorganisms. Fluorescein isothiocyanate trehalose (FITC-Trehalose), which is a fluorescent derivative of trehalose, proves to be a useful functional and imaging probe in studies of trehalose uptake by culture cells (1) or bacteria (2), and sugar metabolization in bacteria (3). 

References

  1. S. A. Mercado, N. K. H. Slater, Increased cryosurvival of osteosarcoma cells using an amphipathic pH-responsive polymer for trehalose uptake. Cryobiology. 73, 175–180 (2016).
  2. K. M. Backus, H. I. Boshoff, C. S. Barry, O. Boutureira, M. K. Patel, F. D’Hooge, S. S. Lee, L. E. Via, K. Tahlan, C. E. Barry 3rd, B. G. Davis, Uptake of unnatural trehalose analogs as a reporter for Mycobacterium tuberculosis. Nat. Chem. Biol. 7, 228–235 (2011).
  3. B. J. Ignacio, T. Bakkum, K. M. Bonger, N. I. Martin, S. I. van Kasteren, Metabolic labeling probes for interrogation of the host–pathogen interaction. Org. Biomol. Chem. 19, 2856–2870 (2021).

 

3. pH Visualizations
Fluorescent dyes have the ability of changing color in response to pH-changes, utilized for measuring pH in living cells. Changes in cellular pH can reflect a range of physiological processes, including muscle contraction, endocytosis, cell proliferation, apoptosis, and ion transport (1). Compared to microelectrode techniques, fluorescent pH-indicators also have greater spatial sampling capability (1). Fluorescent pH-indicators can be coupled with macromolecules, such as dextran. The advantage of using fluorescent dextran derivatives is that the molecules can be accumulated into specific intracellular compartments and don’t bind to cellular proteins (2). Dextran derivatives involving dye-entities like FITC, TRITC or Texas Red™ (3) can be combined in a single dextran in order to achieve more accurate results for a more information-dence readout.

References

  1. J. Han, K. Burgess, Fluorescent indicators for intracellular pH. Chem Rev 110, 2709-28 (2010).
  2. S. Takahashi, Y. Kagami, K. Hanaoka, T. Terai, T. Komatsu, et al., Development of a Series of Practical Fluorescent Chemical Tools To Measure pH Values in Living Samples. J Am Chem Soc 140, 5925-5933 (2018).
  3. R. Weigert, Ed. Advances in Intravital Microscopy From Basic to Clinical Research (Springer, Heidelberg, 2014).

 

4. Hydrogels
Dextran derivatives can be incorporated in hydrogels which can be considered matrices for the controlled release of drug molecules. Ongoing research aimed at improving the fabrication efficiency as well as the drug delivery capability of various anti-cancer drugs can utilize dextran derivatives as they exhibit high hydrogel formation capacity, low toxicity combined with high biocompatibility, and biodegradability (1). Fluorescent dextran derivatives, blue dextran, and other polysaccharides have been used for studying drug delivery with hydrogel scaffolds (2), drug release with microneedles arrays (3,4), drug loading features of nano-erythrocytes (5), and biphasic pulsatile drug release (6).

References

  1. S. Thompson, K. Cass, E. Stellwagen, Blue dextran-sepharose: an affinity column for the dinucleotide fold in proteins. Proc Natl Acad Sci U S A 72, 669-72 (1975).
  2. J. Grenier, et al. Mechanisms of pore formation in hydrogel scaffolds textured by freezedrying. Acta Biomaterialia 94, 195-203 (2019).
  3. E. Larrañeta, S. Stewart, S. Fallows, L. Birkhäuer, M. McCrudden, et al., A facile system to evaluate in vitro drug release from dissolving microneedle arrays. Int J Pharm 497, 62-9 (2016).
  4. R. Thakur, I. Tekko, F. Al-Shammari, A. Ali, H. McCarthy, R. Donnelly, et al., Rapidly dissolving polymeric microneedles for minimally invasive intraocular drug delivery. Drug Deliv Transl Res 6, 800-815 (2016).
  5. X. Dong, Y. Niu, Y. Ding, Y. Wang, J. Zhao, et al., Formulation and Drug Loading Features of Nano-Erythrocytes. Nanoscale Res Lett 12, 202 (2017).
  6. M. Beugeling, N. Grasmeijer, P. Born, d. van, d. van, et al., The mechanism behind the biphasic pulsatile drug release from physically mixed poly(dl-lactic(-co-glycolic) acid)-based compacts. Int J Pharm 551, 195-202 (2018).

 

5. Matrix Preparation
CM-dextran and CM-polysucrose can be used as a matrix component in order to prepare surfaces for cell adherence and culture in studies of magnetic nanoparticles targeted to cancer cells (1) and P-selectin (2), electrochemical immunoassays (3), regulation of scaffold cell adhesion (4) and enzyme immobilization (5), and more. CM-dextran can also be used for the construction of polymer membranes. Phenyl-dextran can use for coating medical devices to impart a more hydrophilic character.

References

  1. B. Ficko, C. NDong, P. Giacometti, K. Griswold, S. Diamond, A Feasibility Study of Nonlinear Spectroscopic Measurement of Magnetic Nanoparticles Targeted to Cancer Cells. IEEE Trans Biomed Eng 64, 972-979 (2017).
  2. M. Juenet, R. Aid-Launais, B. Li, A. Berger, J. Aerts, et al., Thrombolytic therapy based on fucoidan-functionalized polymer nanoparticles targeting P-selectin. Biomaterials 156, 204-216 (2018).
  3. H. Hwang, et al. MESIA: Magnetic force-assisted electrochemical sandwich immunoassays for quantification of prostate-specific antigen in human serum. Analytica Chimica Acta 1061, 92–100 (2019).
  4. M. Burke, J. Armstrong, A. Goodwin, R. Deller, B. Carter, et al., Regulation of Scaffold Cell Adhesion Using Artificial Membrane Binding Proteins. Macromol Biosci 17, (2017).
  5. T. Terentyeva, et al., Bioactive flakeshell capsules: soft silica nanoparticles for efficient enzyme immobilization. J. Mater. Chem. B 1, 3248–3256 (2013).